This is a preview and has not been published.

In Silico Discovery of Novel Drug and Vaccine Targets in Chlamydia abortus Through Subtractive Genomics

Authors

Keywords:

Chlamydia abortus, subtractive genomics‎, vaccine candidate, antimicrobial target, veterinary pathogen genomics

Abstract

Chlamydia abortus is a Gram-negative bacterium that causes chlamydiosis, a zoonotic disease leading to abortions and stillbirths in livestock and posing significant public health risks. With rising antimicrobial resistance and limited treatment efficacy, there is a pressing need for novel, targeted therapeutics to mitigate its economic and zoonotic impact. This study employed a subtractive genomics approach to analyze the complete proteome of C. abortus (strain DSM 27085 / S26/3), aiming to identify essential, non-host homologous proteins involved in unique bacterial metabolic pathways. Out of 932 proteins, five integral membrane proteins YidC, YajC, SecY, CAB503, and CAB746 were selected based on their essentiality, pathogen-specific roles, and absence of host homology. Anti-target screening confirmed no similarity to host proteins, ensuring minimal off-target effects. Antigenicity prediction (VaxiJen > 0.4) identified YidC, YajC, SecY, and CAB503 as strong vaccine candidates, while CAB746 exhibited variable antigenicity across species. Conservancy analysis showed YidC and YajC were highly conserved across C. abortus strains, while the others displayed strain-specific variations. Domain analysis revealed conserved motifs (e.g., IPR002208 in SecY) and transmembrane regions, supporting their structural and immunological relevance. In conclusion, YidC, YajC, SecY, CAB503, and CAB746 represent promising drug and vaccine targets. Their bacterial specificity, immunogenicity, and safety profile warrant further experimental validation to support targeted interventions against chlamydiosis‎‎‎.

 

References

‎1.‎ Cohen S, Ho C. Review of rat (Rattus norvegicus), mouse (Mus ‎musculus), guinea pig (Cavia porcellus), and rabbit (Oryctolagus ‎cuniculus) indicators for welfare assessment. Animals. ‎‎2023;13(13):2167. https://doi.org/10.3390/ani13132167

‎2.‎ Graham AL, Nussey DH, Lloyd-Smith JO, Longbottom D, Maley M, ‎Pemberton JM, et al. Exposure to viral and bacterial pathogens ‎among Soay sheep (Ovis aries) of the St Kilda archipelago. Epidemiol ‎Infect. 2016;144(9):1879-1888. ‎https://doi.org/10.1017/S0950268816000017

‎3.‎ Selim A. Chlamydophila abortus infection in small ruminants: A ‎review. Asian J Anim Vet Adv. 2016;11(10):587-593. ‎https://doi.org/10.3923/ajava.2016.587.593

‎4.‎ Essig A, Longbottom D. Chlamydia abortus: new aspects of ‎infectious abortion in sheep and potential risk for pregnant women. ‎Curr Clin Microbiol Rep. 2015;2:22-34. ‎https://doi.org/10.1007/s40588-015-0014-2

‎5.‎ Hughes L, Visser S, Heddema E, de Smet N, Linssen T, Wijdh RJ, et al. ‎Zoonotic transmission of Chlamydia felis from domestic cats; a case ‎series of chronic follicular conjunctivitis in humans. New Microbes ‎New Infect. 2024;59:101412. ‎https://doi.org/10.1016/j.nmni.2024.101412‎

‎6.‎ Ortega N, Caro MR, Gallego MC, Murcia-Belmonte A, Álvarez D, Del ‎Río L, et al. Isolation of Chlamydia abortus from a laboratory ‎worker diagnosed with atypical pneumonia. Ir Vet J. 2015;69:8. ‎https://doi.org/10.1186/s13620-016-0067-4‎

‎7.‎ Al-Nuaimy WA, Al-Jandeel TJ. Immunological and molecular study ‎of Chlamydia trachomatis as causative agent of abortion in Al-‎Muthanna province. Iraqi J Vet Med. 2018;42(1):99-104. ‎https://doi.org/10.30539/iraqijvm.v42i1.38

‎8.‎ Xia X. Bioinformatics and drug discovery. Curr Top Med Chem. ‎‎2017;17(15):1709-1726. ‎https://doi.org/10.2174/1568026617666161116143440

‎9.‎ Al-Kinani LH, Sharp MA, Wyatt KM, Coiacetto F, Sharp CR, Rossi G, ‎et al. Haemoglobin epsilon as a biomarker for the molecular ‎detection of canine‎ lymphoma. Iraqi J Vet Med. 2023;47(1):21-27. ‎https://doi.org/10.30539/ijvm.v47i1.1494

‎10.‎ Chukwudozie OS, Duru VC, Ndiribe CC, Aborode AT, Oyebanji VO, ‎Emikpe BO. The relevance of bioinformatics applications in the ‎discovery of vaccine candidates and potential drugs for COVID-19 ‎treatment. Bioinform Biol Insights. 2021;15:1-8. ‎https://doi.org/10.1177/11779322211002168

‎11.‎ Sudha R, Katiyar A, Katiyar P, Singh H, Prasad P. Identification of ‎potential drug targets and vaccine candidates in Clostridium ‎botulinum using subtractive genomics approach. Bioinformation. ‎‎2019;15(1):18. https://doi.org/10.6026/97320630015018

‎12.‎ Goodall EC, Robinson A, Johnston IG, Jabbari S, Turner KA, ‎Cunningham AF, et al. The essential genome of Escherichia coli K-12. ‎MBio. 2018;9(1):10-128. https://doi.org/10.1128/mbio.02096-17

‎13.‎ Thomson NR, Yeats C, Bell K, Holden MT, Bentley SD, Livingstone M, ‎et al. The Chlamydophila abortus genome sequence reveals an ‎array of variable proteins that contribute to interspecies variation. ‎Genome Res. 2005;15(5):629-640. ‎https://doi.org/10.1101/gr.3684805‎

‎14.‎ Ijaq J, Chandrasekharan M, Poddar R, Bethi N, Sundararajan VS. ‎Annotation and curation of uncharacterized proteins-challenges. ‎Front Genet. 2015;6:119. ‎https://doi.org/10.3389/fgene.2015.00119

‎15.‎ Shen W, Le S, Li Y, Hu F. SeqKit: a cross-platform and ultrafast ‎toolkit for FASTA/Q file manipulation. PloS One. ‎‎2016;11(10):e0163962. ‎https://doi.org/10.1371/journal.pone.0163962

‎16.‎ Martin FJ, Amode MR, Aneja A, Austine-Orimoloye O, Azov AG, ‎Barnes I, et al. Ensembl 2023. Nucleic Acids Res. ‎‎2023;51(D1):D933-D941. https://doi.org/10.1093/nar/gkac958

‎17.‎ Luo H, Lin Y, Liu T, Lai FL, Zhang CT, Gao F, et al. DEG 15, an update ‎of the database of essential genes that includes built-in analysis ‎tools. Nucleic Acids Res. 2021;49(D1):D677-D686. ‎https://doi.org/10.1093/nar/gkaa917

‎18.‎ Kanehisa M, Furumichi M, Sato Y, Kawashima M, Ishiguro-Watanabe ‎M. KEGG for taxonomy-based analysis of pathways and genomes. ‎Nucleic Acids Res. 2023;51(D1):D587-D592. ‎https://doi.org/10.1093/nar/gkac963

‎19.‎ Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. KEGG as ‎a reference resource for gene and protein annotation. Nucleic Acids ‎Res. 2016;44(D1):D457-D462. ‎https://doi.org/10.1093/nar/gkv1070

‎20.‎ Miller SI, Salama NR. The gram-negative bacterial periplasm: Size ‎matters. PLoS Biol. 2018;16(1):e2004935. ‎https://doi.org/10.1371/journal.pbio.2004935

‎21.‎ Yu CS, Chen YC, Lu CH, Hwang JK. Prediction of protein subcellular ‎localization. Proteins:Struct Funct Bioinf. 2006;64(3):643-651. ‎https://doi.org/10.1002/prot.21018

‎22.‎ Yu NY, Wagner JR, Laird MR, Melli G, Rey S, Lo R, et al. PSORTb 3.0: ‎improved protein subcellular localization prediction with refined ‎localization subcategories and predictive capabilities for all ‎prokaryotes. Bioinformatics. 2010;26(13):1608-1615. ‎https://doi.org/10.1093/bioinformatics/btq249

‎23.‎ Knox, C., Wilson, M., Klinger, CM., Franklin, M., Oler E, Wilson A, et al. ‎DrugBank 6.0: the DrugBank knowledgebase for 2024. Nucleic ‎Acids Res. 2024;52(D1):D1265-D1275. ‎https://doi.org/10.1093/nar/gkad976

‎24.‎ Rao MS, Gupta R, Liguori MJ, Hu M, Huang X, Mantena SR, et al. Novel ‎computational approach to predict off-target interactions for small ‎molecules. Front Big Data. 2019;2:25. ‎https://doi.org/10.3389/fdata.2019.00025‎

‎25.‎ Singh J, Malik D, Raina A. Immuno-informatics approach for B-cell ‎and T-cell epitope based peptide vaccine design against novel ‎COVID-19 virus. Vaccine. 2021;39(7):1087-1095. ‎https://doi.org/10.1016/j.vaccine.2021.01.011

‎26.‎ Quevillon E, Silventoinen V, Pillai S, Harte N, Mulder N, Apweiler R, ‎et al. InterProScan: protein domains identifier. Nucleic Acids Res. ‎‎2005; 33(suppl_2): W116-W120. ‎https://doi.org/10.1093/nar/gki442

‎27.‎ Khan MT, Mahmud A, Iqbal A, Hoque SF, Hasan M. Hasan M. ‎Subtractive genomics approach towards the identification of novel ‎therapeutic targets against human Bartonella bacilliformis. Inform ‎Med Unlocked. 2020;20:100385. ‎https://doi.org/10.1016/j.imu.2020.100385

‎28.‎ Gabler F, Nam SZ, Till S, Mirdita M, Steinegger M, Söding J, et al. ‎Protein sequence analysis using the MPI bioinformatics toolkit. ‎Curr Protoc Bioinformatics. 2020;72(1):e108. ‎https://doi.org/10.1002/cpbi.108

‎29.‎ Chitwood PJ, Hegde RS. The role of EMC during membrane protein ‎biogenesis. Trends Cell Biol. 2019;29(5):371-384. ‎https://doi.org/10.1016/j.tcb.2019.01.007

‎30.‎ Nie D, Hu Y, Chen Z, Li M, Hou Z, Luo X, et al. Outer membrane ‎protein A (OmpA) as a potential therapeutic target for ‎Acinetobacter baumannii infection. J Biomed Sci. 2020;27:1-8. ‎https://doi.org/10.1186/s12929-020-0617-7

‎31.‎ Weiss DR, Karpiak J, Huang XP, Sassano MF, Lyu J, Roth BL, et al. ‎Selectivity challenges in docking screens for GPCR targets and ‎antitargets. J Med Chem. 2018;61(15):6830-6845. ‎https://doi.org/10.1021/acs.jmedchem.8b00718

‎32.‎ Smiline Girija AS. Delineating the immuno-dominant antigenic ‎vaccine peptides against gacS-sensor kinase in Acinetobacter ‎baumannii: an in silico investigational approach. Front Microbiol. ‎‎2020;11:2078. https://doi.org/10.3389/fmicb.2020.02078

‎33.‎ Burland V, Plunkett III G, Daniels DL, Blattner FR. DNA sequence ‎and analysis of 136 kilobases of the Escherichia coli genome: ‎organizational symmetry around the origin of replication. ‎Genomics. 1993;16(3):551-561. ‎https://doi.org/10.1006/geno.1993.1230

‎34.‎ Komar J, Alvira S, Schulze RJ, Martin R, Lycklama a Nijeholt JA, Lee ‎SC, Dafforn TR, Deckers-Hebestreit G, Berger I, Schaffitzel C, ‎Collinson I. Membrane protein insertion and assembly by the ‎bacterial holo-translocon SecYEG–SecDF–YajC–YidC. Biochem. J. ‎‎2016;473(19):3341-3354. https://doi.org/10.1042/BCJ20160545

‎35.‎ Blum M, Chang HY, Chuguransky S, Grego T, Kandasaamy S, Mitchell ‎A, et al. The InterPro protein families and domains database: 20 ‎years on. Nucleic Acids Res. 2021;49(D1):D344-D354. ‎https://doi.org/10.1093/nar/gkaa977

‎36.‎ Sigrist CJ, De Castro E, Cerutti L, Cuche BA, Hulo N, Bridge A, et al. ‎New and continuing developments at PROSITE. Nucleic Acids Res. ‎‎2012;41(D1):D344-D347. https://doi.org/10.1093/nar/gks1067

‎37.‎ Doller D, Wes P. Quality of Research Tools. Handb Exp Pharmacol. ‎‎2020; 257:119-145. https://doi.org/10.1007/978-3-030-33656-1‎

Downloads

Published

2025-10-08

Issue

Section

Articles

How to Cite

In Silico Discovery of Novel Drug and Vaccine Targets in Chlamydia abortus Through Subtractive Genomics. (2025). The Iraqi Journal of Veterinary Medicine. https://doi.org/10.30539/8gd4hm63

Publication Dates