In Silico Discovery of Novel Drug and Vaccine Targets in Chlamydia abortus Through Subtractive Genomics
Keywords:
Chlamydia abortus, subtractive genomics, vaccine candidate, antimicrobial target, veterinary pathogen genomicsAbstract
Chlamydia abortus is a Gram-negative bacterium that causes chlamydiosis, a zoonotic disease leading to abortions and stillbirths in livestock and posing significant public health risks. With rising antimicrobial resistance and limited treatment efficacy, there is a pressing need for novel, targeted therapeutics to mitigate its economic and zoonotic impact. This study employed a subtractive genomics approach to analyze the complete proteome of C. abortus (strain DSM 27085 / S26/3), aiming to identify essential, non-host homologous proteins involved in unique bacterial metabolic pathways. Out of 932 proteins, five integral membrane proteins YidC, YajC, SecY, CAB503, and CAB746 were selected based on their essentiality, pathogen-specific roles, and absence of host homology. Anti-target screening confirmed no similarity to host proteins, ensuring minimal off-target effects. Antigenicity prediction (VaxiJen > 0.4) identified YidC, YajC, SecY, and CAB503 as strong vaccine candidates, while CAB746 exhibited variable antigenicity across species. Conservancy analysis showed YidC and YajC were highly conserved across C. abortus strains, while the others displayed strain-specific variations. Domain analysis revealed conserved motifs (e.g., IPR002208 in SecY) and transmembrane regions, supporting their structural and immunological relevance. In conclusion, YidC, YajC, SecY, CAB503, and CAB746 represent promising drug and vaccine targets. Their bacterial specificity, immunogenicity, and safety profile warrant further experimental validation to support targeted interventions against chlamydiosis.
Received: xx May 2025
Revised: xxAugust 2025
Accepted: xx August 2025
Published online first: xx October 2025
References
1. Cohen S, Ho C. Review of rat (Rattus norvegicus), mouse (Mus musculus), guinea pig (Cavia porcellus), and rabbit (Oryctolagus cuniculus) indicators for welfare assessment. Animals. 2023;13(13):2167. https://doi.org/10.3390/ani13132167
2. Graham AL, Nussey DH, Lloyd-Smith JO, Longbottom D, Maley M, Pemberton JM, et al. Exposure to viral and bacterial pathogens among Soay sheep (Ovis aries) of the St Kilda archipelago. Epidemiol Infect. 2016;144(9):1879-1888. https://doi.org/10.1017/S0950268816000017
3. Selim A. Chlamydophila abortus infection in small ruminants: A review. Asian J Anim Vet Adv. 2016;11(10):587-593. https://doi.org/10.3923/ajava.2016.587.593
4. Essig A, Longbottom D. Chlamydia abortus: new aspects of infectious abortion in sheep and potential risk for pregnant women. Curr Clin Microbiol Rep. 2015;2:22-34. https://doi.org/10.1007/s40588-015-0014-2
5. Hughes L, Visser S, Heddema E, de Smet N, Linssen T, Wijdh RJ, et al. Zoonotic transmission of Chlamydia felis from domestic cats; a case series of chronic follicular conjunctivitis in humans. New Microbes New Infect. 2024;59:101412. https://doi.org/10.1016/j.nmni.2024.101412
6. Ortega N, Caro MR, Gallego MC, Murcia-Belmonte A, Álvarez D, Del Río L, et al. Isolation of Chlamydia abortus from a laboratory worker diagnosed with atypical pneumonia. Ir Vet J. 2015;69:8. https://doi.org/10.1186/s13620-016-0067-4
7. Al-Nuaimy WA, Al-Jandeel TJ. Immunological and molecular study of Chlamydia trachomatis as causative agent of abortion in Al-Muthanna province. Iraqi J Vet Med. 2018;42(1):99-104. https://doi.org/10.30539/iraqijvm.v42i1.38
8. Xia X. Bioinformatics and drug discovery. Curr Top Med Chem. 2017;17(15):1709-1726. https://doi.org/10.2174/1568026617666161116143440
9. Al-Kinani LH, Sharp MA, Wyatt KM, Coiacetto F, Sharp CR, Rossi G, et al. Haemoglobin epsilon as a biomarker for the molecular detection of canine lymphoma. Iraqi J Vet Med. 2023;47(1):21-27. https://doi.org/10.30539/ijvm.v47i1.1494
10. Chukwudozie OS, Duru VC, Ndiribe CC, Aborode AT, Oyebanji VO, Emikpe BO. The relevance of bioinformatics applications in the discovery of vaccine candidates and potential drugs for COVID-19 treatment. Bioinform Biol Insights. 2021;15:1-8. https://doi.org/10.1177/11779322211002168
11. Sudha R, Katiyar A, Katiyar P, Singh H, Prasad P. Identification of potential drug targets and vaccine candidates in Clostridium botulinum using subtractive genomics approach. Bioinformation. 2019;15(1):18. https://doi.org/10.6026/97320630015018
12. Goodall EC, Robinson A, Johnston IG, Jabbari S, Turner KA, Cunningham AF, et al. The essential genome of Escherichia coli K-12. MBio. 2018;9(1):10-128. https://doi.org/10.1128/mbio.02096-17
13. Thomson NR, Yeats C, Bell K, Holden MT, Bentley SD, Livingstone M, et al. The Chlamydophila abortus genome sequence reveals an array of variable proteins that contribute to interspecies variation. Genome Res. 2005;15(5):629-640. https://doi.org/10.1101/gr.3684805
14. Ijaq J, Chandrasekharan M, Poddar R, Bethi N, Sundararajan VS. Annotation and curation of uncharacterized proteins-challenges. Front Genet. 2015;6:119. https://doi.org/10.3389/fgene.2015.00119
15. Shen W, Le S, Li Y, Hu F. SeqKit: a cross-platform and ultrafast toolkit for FASTA/Q file manipulation. PloS One. 2016;11(10):e0163962. https://doi.org/10.1371/journal.pone.0163962
16. Martin FJ, Amode MR, Aneja A, Austine-Orimoloye O, Azov AG, Barnes I, et al. Ensembl 2023. Nucleic Acids Res. 2023;51(D1):D933-D941. https://doi.org/10.1093/nar/gkac958
17. Luo H, Lin Y, Liu T, Lai FL, Zhang CT, Gao F, et al. DEG 15, an update of the database of essential genes that includes built-in analysis tools. Nucleic Acids Res. 2021;49(D1):D677-D686. https://doi.org/10.1093/nar/gkaa917
18. Kanehisa M, Furumichi M, Sato Y, Kawashima M, Ishiguro-Watanabe M. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res. 2023;51(D1):D587-D592. https://doi.org/10.1093/nar/gkac963
19. Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 2016;44(D1):D457-D462. https://doi.org/10.1093/nar/gkv1070
20. Miller SI, Salama NR. The gram-negative bacterial periplasm: Size matters. PLoS Biol. 2018;16(1):e2004935. https://doi.org/10.1371/journal.pbio.2004935
21. Yu CS, Chen YC, Lu CH, Hwang JK. Prediction of protein subcellular localization. Proteins:Struct Funct Bioinf. 2006;64(3):643-651. https://doi.org/10.1002/prot.21018
22. Yu NY, Wagner JR, Laird MR, Melli G, Rey S, Lo R, et al. PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics. 2010;26(13):1608-1615. https://doi.org/10.1093/bioinformatics/btq249
23. Knox, C., Wilson, M., Klinger, CM., Franklin, M., Oler E, Wilson A, et al. DrugBank 6.0: the DrugBank knowledgebase for 2024. Nucleic Acids Res. 2024;52(D1):D1265-D1275. https://doi.org/10.1093/nar/gkad976
24. Rao MS, Gupta R, Liguori MJ, Hu M, Huang X, Mantena SR, et al. Novel computational approach to predict off-target interactions for small molecules. Front Big Data. 2019;2:25. https://doi.org/10.3389/fdata.2019.00025
25. Singh J, Malik D, Raina A. Immuno-informatics approach for B-cell and T-cell epitope based peptide vaccine design against novel COVID-19 virus. Vaccine. 2021;39(7):1087-1095. https://doi.org/10.1016/j.vaccine.2021.01.011
26. Quevillon E, Silventoinen V, Pillai S, Harte N, Mulder N, Apweiler R, et al. InterProScan: protein domains identifier. Nucleic Acids Res. 2005; 33(suppl_2): W116-W120. https://doi.org/10.1093/nar/gki442
27. Khan MT, Mahmud A, Iqbal A, Hoque SF, Hasan M. Hasan M. Subtractive genomics approach towards the identification of novel therapeutic targets against human Bartonella bacilliformis. Inform Med Unlocked. 2020;20:100385. https://doi.org/10.1016/j.imu.2020.100385
28. Gabler F, Nam SZ, Till S, Mirdita M, Steinegger M, Söding J, et al. Protein sequence analysis using the MPI bioinformatics toolkit. Curr Protoc Bioinformatics. 2020;72(1):e108. https://doi.org/10.1002/cpbi.108
29. Chitwood PJ, Hegde RS. The role of EMC during membrane protein biogenesis. Trends Cell Biol. 2019;29(5):371-384. https://doi.org/10.1016/j.tcb.2019.01.007
30. Nie D, Hu Y, Chen Z, Li M, Hou Z, Luo X, et al. Outer membrane protein A (OmpA) as a potential therapeutic target for Acinetobacter baumannii infection. J Biomed Sci. 2020;27:1-8. https://doi.org/10.1186/s12929-020-0617-7
31. Weiss DR, Karpiak J, Huang XP, Sassano MF, Lyu J, Roth BL, et al. Selectivity challenges in docking screens for GPCR targets and antitargets. J Med Chem. 2018;61(15):6830-6845. https://doi.org/10.1021/acs.jmedchem.8b00718
32. Smiline Girija AS. Delineating the immuno-dominant antigenic vaccine peptides against gacS-sensor kinase in Acinetobacter baumannii: an in silico investigational approach. Front Microbiol. 2020;11:2078. https://doi.org/10.3389/fmicb.2020.02078
33. Burland V, Plunkett III G, Daniels DL, Blattner FR. DNA sequence and analysis of 136 kilobases of the Escherichia coli genome: organizational symmetry around the origin of replication. Genomics. 1993;16(3):551-561. https://doi.org/10.1006/geno.1993.1230
34. Komar J, Alvira S, Schulze RJ, Martin R, Lycklama a Nijeholt JA, Lee SC, Dafforn TR, Deckers-Hebestreit G, Berger I, Schaffitzel C, Collinson I. Membrane protein insertion and assembly by the bacterial holo-translocon SecYEG–SecDF–YajC–YidC. Biochem. J. 2016;473(19):3341-3354. https://doi.org/10.1042/BCJ20160545
35. Blum M, Chang HY, Chuguransky S, Grego T, Kandasaamy S, Mitchell A, et al. The InterPro protein families and domains database: 20 years on. Nucleic Acids Res. 2021;49(D1):D344-D354. https://doi.org/10.1093/nar/gkaa977
36. Sigrist CJ, De Castro E, Cerutti L, Cuche BA, Hulo N, Bridge A, et al. New and continuing developments at PROSITE. Nucleic Acids Res. 2012;41(D1):D344-D347. https://doi.org/10.1093/nar/gks1067
37. Doller D, Wes P. Quality of Research Tools. Handb Exp Pharmacol. 2020; 257:119-145. https://doi.org/10.1007/978-3-030-33656-1
Downloads
Published
Issue
Section
License
Copyright (c) 2025 The Iraqi Journal of Veterinary Medicine

This work is licensed under a Creative Commons Attribution 4.0 International License.