Comparison of the Efficiency of Some Non-Thermal Techniques in Detoxifying Aflatoxin B1, Ochratoxin A, and Fumonisin B1 from Feeds of Poultry

Main Article Content

Dr. Hiba S. Alnaemi
Dr. Tamara N. Dawood
Dr. Qais Th. Algwari

Abstract





Atmospheric pressure corona discharge (APCD), ultraviolet C with ozone (UVC w/ O3), and plasma treated water (PTW) have lately been spotlighted in the food industry as non-thermal techniques (NTTs) for detoxifying mycotoxins, due to their unique features. The efficiency of these techniques in detoxifying aflatoxin B1 (Afla B1), ochratoxin A (Ochra A), and fumonisin B1 (Fum B1) in feeds of poultry and their effects on quality of feed were inspected. Samples of feed were subjected to APCD, UVC w/ O3, and PTW for 10, 20, and 60 min. Mycotoxin concentrations were determined by competitive enzyme-linked immunosorbent assay (ELISA), and outcomes were verified by high-performance liquid chromatography (HPLC). Standard analytical methods were adopted for analyzing feed components and determining peroxide values (PVs). Subjecting samples to APCD, UVC w/ O3, and PTW for 10 min resulted in degradation of Afla B1 to levels of 46.6, 38.9, and 28.9%, Ochra A to 49.8, 35.9, and 29.9%, and Fum B1 to 58.6, 42.6, and 35.9%, respectively, for 20 min to Afla B1 levels of 57.7, 46.6, and 32.9%, Ochra A 68.9, 45.3, and 38.5%, and Fum B1 75.7, 49.9, and 41.6%, respectively, for 60 min to Afla B1 levels of 83.2, 65.7, and 33.8%, Ochra A 84.2, 73.6, and 40.7%, and Fum B1 84.8, 71.2, and 43.4%, respectively. The main conclusion of the study is that APCD and UVC w/ O3 can be adopted to efficiently degrade Afla B1, Ochra A, and Fum B1 in feed while maintaining its quality. According to their impact on feed quality, techniques can be ranked as follows: APCD > UVC w/ O3 > PTW‎‎‎.





Downloads

Download data is not yet available.

Article Details

Section

Articles

Author Biographies

Dr. Hiba S. Alnaemi, College of Veterinary Medicine, University of Mosul, Mosul, Iraq

Department of Veterinary Public Health, Assistant Professor, PhD in Veterinary Public Health.

Dr. Tamara N. Dawood, College of Veterinary Medicine, University of Baghdad, Baghdad, Iraq

Department of Veterinary Public Health, Assistant Professor, PhD in Veterinary Public Health.

Dr. Qais Th. Algwari, College of Electronic Engineering, University of Nineveh, Mosul, Iraq

Department of Electronics, Professor, PhD in Atmospheric pressure plasma jets.

How to Cite

Alnaemi, H., Dawood, T., & Algwari, Q. (2025). Comparison of the Efficiency of Some Non-Thermal Techniques in Detoxifying Aflatoxin B1, Ochratoxin A, and Fumonisin B1 from Feeds of Poultry. The Iraqi Journal of Veterinary Medicine, 49(2), 53-61. https://doi.org/10.30539/z12e9c19

Publication Dates

References

CO, et al. Mycotoxins affecting animals, foods, humans, and plants: ‎Types, occurrence, toxicities, action mechanisms, prevention, and ‎detoxification strategies-a revisit. Foods. 2021;10(6):1279. ‎‎https://doi.org/10.3390/foods10061279

‎2.‎ Al-Taee ZT, Saeed MG. Correlation incidence between infectious ‎bursal disease and aflatoxicosis in broilers chicken farms in ‎Nineveh province. Iraqi J Vet Sci. 2023;37(1):183-190. ‎‎https://doi.org/10.33899/ijvs.2022.133881.2315

‎3.‎ Al-Hichamy HH, Al-Saaidi JA. Influence of prepubertal aflatoxicosis ‎on pubertal reproductive activity in male rats. Iraqi J Vet Sci. ‎‎2024;38(2):267-273. https://doi.org/10.33899/ijvs.2023.141632.3125

‎4.‎ Hassan FF, Al- Jibouri MH, Hashim AJ. Isolation and identification of ‎fungal propagation in stored maize and detection of aflatoxin B1 ‎using TLC and ELISA technique. Iraqi J Sci. 2014;55(2B):634-642. ‎https://ijs.uobaghdad.edu.iq/index.php/eijs/article/view/11743‎

‎5.‎ Saadullah AA, Abdullah SK. Detection of Aspergillus species in dried ‎fruits collected from Duhok market and study their aflatoxiginic ‎properties. Rafidain J Sci. 2014;25(1):12-18. ‎‎https://doi.org/10.33899/rjs.2014.86052

‎6.‎ Dey DK, Kang JI, Bajpai VK, Kim K, Lee H, Sonwal S, et al. Mycotoxins ‎in food and feed: Toxicity, preventive challenges, and advanced ‎detection techniques for associated diseases. Crit Rev Food Sci ‎Nutr. 2023;63(27):8489-510.

https://doi.org/10.1080/10408398.2022.2059650

‎7.‎ Minati MH, Mohammed-Ameen MK. First report of three kinds of ‎mycotoxins dioxynivalenol, nivalenol and fumonisin B2 in seeds of ‎seven wheat cultivars in Iraq. Iraqi J Vet Med. 2023;43(1):43-49. ‎‎https://doi.org/10.30539/iraqijvm.v43i1.469

‎8.‎ Majeed SHA, Khammas EJ. Aflatoxin in chicken's feed and its effects ‎on apoptosis. Iraqi J Vet Med. 2010;34(1):29-43. ‎‎

https://doi.org/10.30539/iraqijvm.v34i1.656

‎9.‎ Abbas DA, Faraj MK, Abed AR. Some biochemical and ‎histopathological effects of different oral doses ochratoxin A in ‎male rats. Iraqi J Vet Med. 2012;36(0E):182-189. ‎‎https://doi.org/10.30539/iraqijvm.v36i0E.414

‎10.‎ Suhail MT, AL-Musawi MT, Jawad AM. Detection of aflatoxin B1 ‎among early and middle childhood Iraqi patients. Baghdad Sci J. ‎‎2020;17(2): 37. https://doi.org/10.21123/bsj.2020.17.2(SI).0604

‎11.‎ Mehtab U, Tahir M, Abbas R, Abbas A, Hussain K, Siddiqui F, et al. ‎Ochratoxin A occurrence, its pathological effects on poultry health ‎and decontamination apprOchra Aches. J Hellenic Vet Med Soc. ‎‎2021;72(4):3257-62. https://doi.org/10.12681/jhvms.29355

‎12.‎ Al-Naemey HMM, Ja'afar NS, Omran HA. Study of using Thymbra ‎spicata leaves to reduce the toxic immunosuppressive effect of ‎aflatoxin in broilers. Iraqi J Ve Med. 2008;32(1):140-147. ‎‎‎https://doi.org/10.30539/iraqijvm.v32i1.774

‎13.‎ Hassan FF. Detection of aflatoxin B1 in some canned foods and ‎reduction of toxin by ultraviolet radiation. Iraqi J Sci. ‎‎2017;58(4C):2343-2349.https://doi.org/10.24996/ijs.2017.58.4C.10

‎14.‎ Marshall H, Meneely JP, Quinn B, Zhao Y, Bourke P, Gilmore BF, et al. ‎Novel decontamination apprOchra Aches and their potential ‎application for post-harvest aflatoxin control. Trends Food Sci ‎Technol. 2020;106:489-96. https://doi.org/10.1016/j.tifs.2020.11.001

‎15.‎ Ferreira CD, Lang GH, Lindemann I, Timm N, Hoffmann JF, Ziegler V, ‎et al. Postharvest UV-C irradiation for fungal control and reduction ‎of mycotoxins in brown, black, and red rice during long-term ‎storage. Food Chem. 2021;339:127810. ‎

https://doi.org/10.1016/j.foodchem.2020.127810

‎16.‎ Ahmed B, Ibrahim B, Mustafa Y. The protective role of natural ‎coumarins derivatives and anpro supplement against aflatoxin B1 ‎pollution in the quails coturnix japonica diet. Mesop J Agric. ‎‎2023;51(1):1-13. https://doi.org/10.33899/magrj.2023.136713.1205

‎17.‎ Nava-Ramirez MJ, Maguey-Gonzalez JA, Gomez-Rosales S, ‎Hernandez-Ramirez JO, Latorre JD, Du X, et al. Efficacy of powdered ‎alfalfa leaves to ameliorate the toxic effects of aflatoxin B1 in turkey ‎poults. Mycotoxin Res. 2024;40(2):269-77.

https://doi.org/10.1007/s12550-024-00527-4

‎18.‎ Rahawi AM, Al-Taee SK, Ali FF, Altaey OY, Abdullah DA. Protective ‎role of biosynthetic silver nanoparticles in broilers with ‎aflatoxicosis through histopathological study of spleen. Iraqi J Vet ‎Sci. 2024;38(3):565-572. https://doi.org/10.33899/ijvs.2024.146024.3414

‎19.‎ Ujilestari T, Adli DN, Alifian MD, Irawan A, Nurfitriani RA, Hudaya ‎MF, et al. Evaluating zeolite stability as a mycotoxin binder in ‎broiler chickens' growth performance: A meta-analysis. Iraqi J Vet ‎Sci. 2025;39(3):511-519. 10.33899/ijvs.2025.157757.4148‎

‎20.‎ Allai FM, Azad AA, Mir NA, Gul K. Recent advances in non-thermal ‎processing technologies for enhancing shelf life and improving food ‎safety. Appl Food Res. 2023;3(1):100258. ‎‎https://doi.org/10.1016/j.afres.2022.100258

‎21.‎ Puligundla P, Lee T, Mok C. Effect of corona discharge plasma jet ‎treatment on the degradation of aflatoxin B1 on glass slides and in ‎spiked food commodities. Lebensm Wiss Technol. ‎‎2019;124(1):108333. https://doi.org/10.1016/j.lwt.2019.108333

‎22.‎ Yousefi M, Mohammadi MA, Khajavi MZ, Ehsan A, Scholtz V. ‎Application of novel non-thermal physical technologies to degrade ‎mycotoxins. J Fungi. 2021;7(5):395.https://doi.org/10.3390/jof7050395

‎23.‎ Thirumdas R, Kothakota A, Annapure U, Siliveru K, Blundell R, Gatt ‎R, et al. Plasma activated water (PTW): Chemistry, physico-‎chemical properties, applications in food and agriculture. Trends ‎Food Sci Technol. 2018;77:21-31.https://doi.org/10.1016/j.tifs.2018.05.007

‎24.‎ Malajowicz J, Khachatryan K, Kozłowska M. Properties of water ‎activated with low temperature plasma in the context of microbial ‎activity. Beverages. 2022;8(4):63. https://doi.org/10.3390/beverages8040063

‎25.‎ Zhou RW, Zhou RS, Wang PY, Xian YB, MaiProchnow A, Lu XP, et al. ‎Plasma-treated water: Generation, origin of reactive species and ‎biological applications. J Phys D Appl Phys. 2020;53(30):303001. ‎https://doi.org/10.1088/1361-6463/ab81cf

‎26.‎ Xu H, Fang C, Huang Q. Achieving improved efficiency for removal of ‎aflatoxin B1 by combination use of cold atmospheric-pressure ‎plasma and plasma-treated water. J Water Process Eng. ‎‎2023;54(38):104004. https://doi.org/10.1016/j.jwpe.2023.104004

‎27.‎ Stanley JS, Patras A, Pendyala B, Vergne MJ, Bansode RR. ‎Performance of a UV-A LED system for degradation of aflatoxins B1 ‎and M1 in pure water: Kinetics and cytotoxicity study. Sci Rep. ‎‎2020;10(1):13473. https://doi.org/10.1038/s41598-020-70370-x

‎28.‎ He J, Evans NM, Liu H, Zhu Y, Zhou T, Shao S. UV treatment for ‎degradation of chemical contaminants in food: A review. Compr ‎Rev Food Sci Food Saf. 2021;20(2):1857-1886.https://doi.org/10.1111/1541-4337.12698

‎29.‎ Claus H. Ozone generation by ultraviolet lamps. Photochem ‎Photobiol. 2021;97(3):471-476. ‎https://doi.org/10.1111/php.13391

‎30.‎ Li H, Xiong Z, Gui D, Pan Y, Xu M, Guo Y, et al. Effect of ozonation and ‎UV irradiation on aflatoxin degradation of peanuts. J Food Process ‎Preserv. 2019;43(11):e13914.https://doi.org/10.1111/jfpp.13914

‎31.‎ Hubner U, Spahr S, Lutze H, Wieland A, Ruting S, Gernjak W, et al. ‎Advanced oxidation processes for water and wastewater ‎treatment - Guidance for systematic future research. Heliyon. ‎‎2024;10(9):e30402.https://doi.org/10.1016/j.heliyon.2024.e30402

‎32.‎ Alnaemi HS, Dawood TN, Algwari QT. Aflatoxin B1, ochratoxin A, ‎and fumonisin B1 detoxification from poultry feeds by corona ‎discharge application. J Adv Vet Anim Res. 2024;11(4):819-834. ‎https://doi.org/10.5455/javar.2024.k834

‎33.‎ Alnaemi HS, Dawood TN, Algwari QT. Plasma-treated water ‎application for detoxification of aflatoxin B1, ochratoxin A, and ‎fumonisin B1 in poultry feeds. Open Vet J. 2023;13(12):1654-1668. ‎‎https://doi.org/10.5455/OVJ.2023.v13.i12.15

‎34.‎ AOAC (Association of Official Analytical Chemists). Moisture in ‎animal feed, method (930.15) Official Methods of Analysis, 1990. In: ‎Undersander D, Mertens DR, Thiex N, editors. Forage analyses ‎procedures. National Forage Testing Association; 1993. ‎https://fyi.extension.wisc.edu/forage/files/2014/01/NFTA-‎Forage-Analysis-Procedures.pdf

‎35.‎ Alnaemi H, Dawood TN, Algwari Q. Ultraviolet C and ozone ‎application for detoxification of aflatoxin B1, ochratoxin A, and ‎fumonisin B1 in poultry feeds. Egypt J Vet Sci. 2025;56(4):797-813. ‎‎https://doi.org/10.21608/ejvs.2024.277904.1937

‎36.‎ Kim EK, Shon DH, Yoo JY, Ryu D, Lee C, Kim YB. Natural occurrence ‎of aflatoxins in Korean meju. Food Addit Contam. 2001;18(2):151-‎‎6.

https://doi.org/10.1080/02652030010006104

‎37.‎ Nesheim S, Stack ME, Trucksess MW, Eppley RM, Krogh P. Rapid ‎solvent-efficient method for liquid chromatographic determination ‎of ochratoxin A in corn, barley, and kidney: Collaborative study. J ‎AOAC Int. 1992;75(3):481-7. https://doi.org/10.1093/jaoac/75.3.481

‎38.‎ ‎ Shephard GS, Sydenham EW, Thiel PG, Gelderblom WC. Quantitative ‎determination of fumonisins B1 and B2 by high-performance liquid ‎chromatography with fluorescence detection. J Liq Chromatogr. ‎‎1990;13(10):2077-87. https://doi.org/10.1080/01483919008049014

‎39.‎ Thiex N, Novotny L, Crawford A. Determination of ash in animal ‎feed: AOAC official method 942.05 revisited. J AOAC Int. ‎‎2012;95(5):1392-7. https://doi.org/10.5740/jaoacint.12-129

‎40.‎ AOAC (Association of Official Analytical Chemists). Protein (crude) ‎determination in animal feed: Copper catalyst kjeldahl method ‎‎(984.13) Official Methods of Analysis, 1990. In: Undersander D, ‎Mertens DR, Thiex N, editors. Forage analyses procedures. National ‎Forage Testing Association; 1993. ‎https://fyi.extension.wisc.edu/forage/files/2014/01/NFTA-‎Forage-Analysis-Procedures.pdf

‎41.‎ DuBois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. Colorimetric ‎method for determination of sugars and related substances. Anal ‎Chem. 1956;28:350-6. https://doi.org/10.1021/ac60111a017

‎42.‎ AOAC (Association of Official Analytical Chemists). In: Latimer GW, ‎editor. Official Methods of Analysis of AOAC International. 18th ‎edition. Gaithersburg, MD, AOAC International; 2006. ‎https://www.scribd.com/document/480055415/AOAC-920-39‎

‎43.‎ AOAC (Association of Official Analytical Chemists). AOAC official ‎method 965.33: Peroxide value. In: Horwitz W, editor. Official ‎Method of Analysis of AOAC International. 17th edition. ‎Gaithersburg, Md, AOAC International; 1969. 12 p. ‎https://www.scribd.com/document/501494648/AOAC-965-33-‎Peroxide-Value

‎44.‎ Steel RG, Torrie JH. Principles and procedures of statistics. New ‎York: McGraw-Hill Book Company; 1961. 481 p. ‎‎10.2134/agronj1961.00021962005300050002x‎

‎45.‎ Duncan DB. Multiple range and multiple F tests. Biometrics. ‎‎1955;11(1):1-42. ‎https://www.jstor.org/stable/3001478?origin=crossref

https://doi.org/10.2307/3001478

‎46.‎ Wang Y, Shang J, Cai M, Liu Y, Yang K. Detoxification of mycotoxins in ‎agricultural products by non-thermal physical technologies: A ‎review of the past five years. Crit Rev Food Sci Nutr. ‎‎2023;63(33):11668-11678. https://doi.org/10.1080/10408398.2022.2095554

‎47.‎ Molina-Hernandez JB, Grande-Tovar CD, Neri L, Delgado-Ospina J, ‎Rinaldi M, Cordero-Bueso GA, et al. Enhancing postharvest food ‎safety: The essential role of non-thermal technologies in combating ‎fungal contamination and mycotoxins. Front Microbiol. 2025; ‎‎16:1543716. https://doi.org/10.3389/fmicb.2025.1543716

‎48.‎ Hojnik N, Modic M, Tavcar-Kalcher G, Babic J, Walsh JL, Cvelbar U. ‎Mycotoxin decontamination efficacy of atmospheric pressure air ‎plasma. Toxins. 2019;11(4):219. https://doi.org/10.3390/toxins11040219

‎49.‎ Chen H, Arcega R, Herianto S, Hou C, Lin C. Mycotoxin ‎decontamination of foods using nonthermal plasma and plasma-‎treated water. In: Alina Marc R, editor. Mycotoxins and food safety - ‎recent advances. IntechOpen; 2022. https://doi.org/10.5772/intechopen.103779

‎50.‎ Nesic KD, Pisinov BP, Jaksic SM, Tasic AМ, Savic BM, Pavlovic NJ. ‎Comparison of ELISA and HPLC methods for the detection of ‎mycotoxins by analyzing proficiency test results. Zbornik Matice ‎srpske za prirodne nauke. 2017;2017(133):79-93. ‎‎

https://doi.org/10.2298/ZMSPN1733079N

‎51.‎ Diao E, Li X, Zhang Z, Ma W, Ji N, Dong H. Ultraviolet irradiation ‎detoxification of aflatoxins. Trends Food Sci Technol. ‎‎2015;42(1):64-69.

https://doi.org/10.1016/j.tifs.2014.12.001

‎52.‎ Perna A, Gambacorta E, Simonetti A, Grassi G, Scopa A. Effect of ‎ozone treatment exposure time on oxidative stability of cream milk. ‎Eur J Lipid Sci Technol. 2022;124(8):2100238. ‎‎‎https://doi.org/10.1002/ejlt.202100238

‎53.‎ Zare L, Mollakhalili-Meybodi N, Fallahzadeh H, Arab M. Effect of ‎atmospheric pressure cold plasma (ACP) treatment on the ‎technological characteristics of quinOchra A flour. LWT-Food Sci ‎Tech. 2021;155(2):112898. https://doi.org/10.1016/j.lwt.2021.112898

‎54.‎ Zhao YM, Oliveira M, Burgess CM, Cropotova J, Rustad T, Sun DW, et ‎al. Combined effects of ultrasound, plasma-treated water, and ‎peracetic acid on decontamination of mackerel fillets. LWT-Food ‎Sci Tech. 2021;150(2):111957. https://doi.org/10.1016/j.lwt.2021.111957

‎55.‎ Mohammadi S, Imani S, Dorranian D, Tirgari S, Shojaee M. The effect ‎of non-thermal plasma to control of stored product pests and ‎changes in some characters of wheat materials. J Biodivers Environ ‎Sci. 2015;7(5):150-6. https://www.innspub.net/wp-‎content/uplOchra Ads/2022/12/JBES-V7-No5-p150-156.pdf‎

‎56.‎ Ribeiro DF, Faroni LR, Pimentel MA, Prates LH, Heleno FF, De ‎Alencar ER. Ozone as a fungicidal and detoxifying agent to maize ‎contaminated with fumonisins. Ozone: Sci Eng. 2022;44(1):38-49. ‎‎https://doi.org/10.1080/01919512.2021.1924616

‎57.‎ Celik O, Sivri GT, Okur AA. Gaseous ozone application on microbial ‎properties of broiler feeds. Ital J Anim Sci. 2021;20(1):1094-1102. ‎‎

https://doi.org/10.1080/1828051X.2021.1945960

‎58.‎ Sarangapani C, Devi RY, Thirumdas R, Trimukhe AM, Deshmukh RR, ‎Annapure US. Physico-chemical properties of low-pressure plasma ‎treated black gram. LWT-Food Sci Tech. 2017a;79(2):102-110. ‎‎https://doi.org/10.1016/j.lwt.2017.01.017

‎59.‎ Dale N. National research council nutrient requirements of poultry. ‎‎9th revised edition. J Appl Poult Res. 1994;3(1):101-101. ‎‎

https://doi.org/10.1093/japr/3.1.101

‎60.‎ Yi-gang Y, Han-ruo M, Rui H, Yu-qian T, Xing-long X. Degradation of ‎deoxynivalenol in flour by ozone and ultraviolet light and their ‎effects on flour quality. Mod Food Sci Technol. 2016;32(9):196-‎‎202. 10.13982/j.mfst.1673-9078.2016.9.029‎

‎61.‎ Starek-Wojcicka A, Rozylo R, Niedzwiedz I, Kwiatkowski M, ‎Terebun P, Polak-Berecka M, et al. Pilot study on the use of cold ‎atmospheric plasma for preservation of bread. Sci Rep. ‎‎2022;12(1):22003. https://doi.org/10.1038/s41598-022-26701-1

‎62.‎ Garg N, Aggarwal M, Javed S, Khandal R. Studies for optimization of ‎conditions for reducing aflatoxin contamination in peanuts using ‎ultraviolet radiations. Int J Drug Dev Res. 2013;5(3):408-‎‎424.https://www.ijddr.in/drug-development/studies-for-‎optimization-of-conditions-for-reducing-aflatoxincontamination-‎in-peanuts-using-ultraviolet-radiations.pdf

‎63.‎ Ali EM, Abdallah BM. The potential use of ozone as antifungal and ‎antiaflatoxigenic agent in nuts and its effect on nutritional quality. ‎Braz J Biol. 2022;84:e263814. https://doi.org/10.1590/1519-6984.263814

‎64.‎ Deng S, Ruan R, Mok CK, Huang G, Lin X, Chen P. Inactivation of ‎Escherichia coli on almonds using non thermal plasma. J Food Sci. ‎‎2007;72(2):M62-6. https://doi.org/10.1111/j.1750-3841.2007.00275.x

‎65.‎ Herianto S, Hou CY, Lin CM, Chen HL. Nonthermal plasma-treated ‎water: A comprehensive review of this new tool for enhanced food ‎safety and quality. Compr Rev Food Sci Food Safety. ‎‎2021;20(1):583-626. ‎https://doi.org/10.1111/1541-4337.12667

‎66.‎ Wang L, Shao H, Luo X, Wang R, Li Y, Li Y, et al. Effect of ozone ‎treatment on deoxynivalenol and wheat quality. PLoS One. ‎‎2016;11(1):e0147613. https://doi.org/10.1371/journal.pone.0147613

‎67.‎ Choi EJ, Park HW, Kim SB, Ryu S, Lim J, Hong EJ, et al. Sequential ‎application of plasma-treated water and mild heating improves ‎microbiological quality of ready to-use shredded salted Chinese ‎cabbage (Brassica pekinensis L.). Food Control. 2018;98:501-509. ‎‎

https://doi.org/10.1016/j.foodcont.2018.12.007

‎68.‎ Zheng Y, Wu S, Dang J, Wang S, Liu Z, Fang J, et al. Reduction of ‎phoxim pesticide residues from grapes by atmospheric pressure ‎nonthermal air plasma activated water. J hazard mater. ‎‎2019;377:98-105. ‎https://doi.org/10.1016/j.jhazmat.2019.05.058

‎69.‎ Xiang Q, Zhang R, Fan L, Ma Y, Wu D, Li K, et al. Microbial inactivation ‎and quality of grapes treated by plasma-treated water combined ‎with mild heat. LWT-Food Sci Tech. 2020;126:109336. ‎‎https://doi.org/10.1016/j.lwt.2020.109336

‎70.‎ Wealleans AL, Bierinckx K, Witters E, di Benedetto M, Wiseman J. ‎Assessment of the quality, oxidative status and dietary energy ‎value of lipids used in non-ruminant animal nutrition. J Sci Food ‎Agric. 2021;101(10):4266-77. https://doi.org/10.1002/jsfa.11066

‎71.‎ Jung S, Kim HJ, Park S, Yong HI, Choe JH, Jeon HJ, et al. The use of ‎atmospheric pressure plasma-treated water as a source of nitrite ‎for emulsion-type sausage. Meat Sci. 2015;108:132-137. ‎‎https://doi.org/10.1016/j.meatsci.2015.06.009

‎72.‎ Sarangapani C, Keogh DR, Dunne J, Bourke P, Cullen PJ. ‎Characterization of cold plasma treated beef and dairy lipids using ‎spectroscopic and chromatographic methods. Food Chem. ‎‎2017b;235(3):324-333. https://doi.org/10.1016/j.foodchem.2017.05.016

‎73.‎ Shen MH, Singh RK. Effective UV wavelength range for increasing ‎aflatoxins reduction and decreasing oil deterioration in ‎contaminated peanuts. Food Res Int. 2022;154:111016. ‎‎https://doi.org/10.1016/j.foodres.2022.111016

‎74.‎ Zhang B, Tan C, Zou F, Sun Y, Shang N, Wu W. Impacts of cold plasma ‎technology on sensory, nutritional and safety quality of food: A ‎review. Foods. 2022;11(18):2818. https://doi.org/10.3390/foods11182818

Similar Articles

You may also start an advanced similarity search for this article.